Оценка параметров устойчивости и управляемости АТС в стендовых условиях
Страница 4

Материалы » Инструментальное и методологическое обеспечение полигонных и стендовых исследований маневра автотранспортных средств » Оценка параметров устойчивости и управляемости АТС в стендовых условиях

- разработать математическую модель криволинейного движения автомобиля и комплексы входных параметров, адекватно отражающие различные режимы движения и маневры автомобиля;

- данная модель должна в качестве выходных параметров иметь показатели БДД по условиям устойчивости и управляемости;

- проведение полигонных испытаний испытуемых автомобилей и получение указанных выше показателей БДД;

- сравнение результатов и выводы.

Принимаем общие допущения:

При проведении полигонных испытаний в рассматриваемых нами режимах движения управляемые колеса поворачиваются на угол менее 15°, т.е. автомобиль движется по траектории сравнительно больших радиусов и на высоких скоростях. Поэтому стендовые испытания предлагается проводить при углах поворота управляемых колес не более 10°.

Предполагается, что в данных режимах испытаний можно достоверно отследить влияние ухудшения тех. состояния АТС на снимаемые со стенда параметры, и при этом избежать больших нелинейных ошибок, возникающих из-за особенностей контакта шины с поверхностью барабанов.

Остальные допущения и условия обосновываются и оговариваются в соответствующих моделях.

1. Существуют известные зависимости, отражающие изменение нормальных реакций на колесо со стороны барабанов (RNп и RNи) в различных режимах испытаний. Необходимо проанализировать следующие предположения:

RNп / RNи = RXп / RXи = RYп / RYи;

RNп + RNи = Gк;

RYп + RYи = РY,

из которых можно найти значение РY, сняв с измерительного устройства значение RYи.

2. В режиме испытаний на стенде, когда движение колеса осуществляется посредством привода автомобиля (передний привод), реакции RYп и RYи сонаправлены. В случае, когда управляемые колеса приводятся во вращение электроприводом барабана или двигателем автомобиля (задний привод) через цепную передачу, данные реакции противоположно направлены, причем меняется направление реакции RYп. При этом изменяется форма пятна контакта шины и приводного барабана. Это приводит к тому, что деформация шины в обоих случаях (особенно во втором) значительно отличается от ее деформации в дорожных условиях.

В связи с этим высказывается предложение синхронного привода от двигателя автомобиля и электродвигателя приводных барабанов с целью взаимной нейтрализации возникающих реакций RYп. Согласно данному предложению, суммарная боковая реакция на колесе будет равна нулю при равенстве касательных скоростей колеса и барабана (wб×rб = wк×rк).

Поскольку радиус колеса в процессе испытаний изменяется, то в качестве синхронизирующего фактора, определяющего передаточное число скоростей вращения барабана и колеса, предлагается изменяющееся расстояние между осями вращения колеса и барабана. Либо, если анализ позволит заключить о малых погрешностях результатов при допущении rк = const, синхронизировать скорости вращения колес и барабанов через постоянное отношение их радиусов.

3. При выполнении предыдущего условия логически приходим к отсутствию касательных реакций в этом пятне контакта. Отсюда можно сделать вывод о том, что при данном режиме испытаний характер взаимодействия приводного управляемого колеса автомобиля с приводным барабаном будет идентичен состоянию покоя. При этом на измерительных барабанах сохраняются те же физические процессы, что и без описанной синхронизации. На наш взгляд, данный режим значительно приближает стендовое испытание к дорожному в вопросе идентичности пятна контакта, но данное предложение требует теоретического обоснования и практического подтверждения.

4. Не совсем понятен характер распределения нормальных реакций на колесо в описанном режиме и, как следствие, доля касательной и боковой реакций на колесо со стороны измерительного барабана. Allbest.ru

Страницы: 1 2 3 4 

Самое популярное:

Служебное расследование дорожно-транспортных происшествий
Исходные данные Дорожные условия: - место ДТП – ул. Ткачева; - профиль дороги – горизонтальный; - покрытие проезжей части на участке происшествия – асфальт; - ширина проезжей части составляет 7 м; - время ДТП - 10 апреля 2006 г. около 15 часов 30 минут; - состояни ...

Тракторный транспорт и многоканальные системы
Целью данной работы является установка систему дистанционного управления на транспортное средство (бульдозер) с целью наблюдения за его местом положения, техническим состоянием, и управлением в реальном масштабе времени или режиме постоянной обработки. В настоящее время множество чрезвыч ...

Зона уборочно-моечных работ автомобилей автотранспортного предприятия г. Челябинск
В производстве продуктов питания для населения и сырья для промышленности осуществляется большой объем перевозок. В связи с этим предъявляются принципиально новые требования к транспорту. Прежде всего, необходимо: · повышать производительность труда; · снижать транспортные расхо ...

Разделы


Copyright © 2020 - All Rights Reserved - www.intotransport.ru