Взаимосвязь элементов судна и составляющих сопротивления
Страница 1

Материалы » Проектирование судов » Взаимосвязь элементов судна и составляющих сопротивления

Рассмотрим влияние элементов судна на каждое слагаемое сопротивления.

Сопротивление трения будет зависеть только от величин ξтр и Ω. Варьируя именно этими переменными можно изменить значение сопротивления трения.

Коэффициент ξтр является функцией числа Рейнольдса (Re = υL/ν, где ν – коэффициент кинематической вязкости жидкости, м2/с).

.

При изменении элементов проектируемого судна для выбора оптимального варианта его длина изменяется сравнительно незначительно, обычно не более 15 – 20 %, что определяет относительное постоянство Re. Следовательно, можно считать, что для всех вариантов проектируемого судна коэффициенты ξтр равны.

Площадь смоченной поверхности Ω существенно зависит от основных элементов судна. Из формулы Тейлора для Ω видно однозначное влияние величины l на площадь смоченной поверхности. Выразим абсолютную длину судна через отношение главных размерений

.

Так как Rтр зависит от Ω, а Ω от относительной длины, можно на основе формулы для l выявить влияние элементов на Rтр.

1. Увеличение δ приводит к уменьшению l, что в свою очередь уменьшает Ω. Сопротивление трения при этом снижается;

2. Увеличение отношения В/Т приводит к увеличению Rтр;

3. Увеличение L/В приводит к увеличению Rтр, причем рост сопротивления будет более интенсивным, чем в предыдущем случае, поскольку показатель степени в два раза больше.

Сопротивление формы подразумевает совокупность нескольких видов сопротивлений, обусловленных вязкостью жидкости: сопротивления, обусловленного конечностью толщины пограничного слоя и его отрывом от поверхности; сопротивления, обусловленного кривизной поверхности наружной обшивки и сопротивления, связанного с разрушением носовой подпорной волны.

Основным компонентом сопротивления формы является сопротивление, вызванное изменением давлений в потоке воды, перемещающейся по длине корпуса судна, и появлением вихрей в кормовой оконечности.

При определении элементов судна необходимо выбирать их таким образом, чтобы избежать интенсивного вихреобразования, вызывающего рост сопротивления формы. В первую очередь это требование относится к тихоходным судам с высокими значениями δ, у которых волновое сопротивление практически равно нулю. Геометрический параметр, определяющий интенсивность вихреобразования, является кривизна кормовых ветвей ватерлиний, которая связана с длиной кормового заострения Lкз, измеряемой от кормовой границы цилиндрической вставки (рис. 35). Чем больше Lкз, тем более пологими окажутся в корме ватерлинии и тем меньше вероятность срыва вихрей. С повышением скорости и степени кривизны обводов вихреобразование увеличивается и Rф растет.

Для определения минимально допустимого значения Lкз, гарантирующего отсутствие интенсивного вихреобразования используется формула Бэкера

.

Рис. 35. Протяженность носового и кормового заострений

Переходя к относительной длине кормового заострения lкз = Lкз/L можно записать,

.

Из последней формулы видно, что с увеличением отношения L/В относительная длина кормового заострения может быть уменьшена. То же самое можно утверждать в отношении величины В/Т. Влияние коэффициента β противоположно, с его увеличением величина lкз возрастает.

Значение коэффициента волнового сопротивления ξвл, в зависимости от скорости, изменяет свое значение в достаточно широком диапазоне. Не удается связать ξвл с элементами судна какой-то простой зависимостью, можно лишь выделить основные фактора влияющие на величину этого коэффициента. Кроме относительной скорости, это форма носовой оконечности, коэффициент продольной полноты φ и относительная длина l.

Страницы: 1 2

Самое популярное:

Реконструкция участка по ремонту агрегатов ООО "Транспорт-К"
ООО «Транспорт-К» смешанное автотранспортное предприятие. Осуществляет перевозку грузов и пассажиров. Служба эксплуатации и техническая служба состоят из: ЕТО; ТО-1 и ТО-2; сезонное обслуживание; Д-1 и Д-2. Основные производственные участки: моторный, агрегатный, механической обработки ...

Двигатели автомобильно-транспортных средств
Механическую энергию, необходимую для привода в действие различных машин, можно получить путем использования тепловой, гидравлической, солнечной энергии и энергии ветра. Наиболее широко используют тепловую энергию, получаемую из органического и ядерного топлива. Большинство транспортных у ...

Система питания двигателя сжиженным газом. Карбюратор К-126 Г. Работа четырехтактного двигателя
В газобаллонной установке на сжиженном газе (СГ) автомобиля ГАЗ-2417 (рисунок 1) баллон 5 размещается в багажнике автомобиля. На нем монтируются датчик 6 указателя уровня сжиженного газа и объединенные в один узел расходный вентиль 7 жидкостной фазы и расходный вентиль 9 паровой фазы, а ...

Разделы


Copyright © 2024 - All Rights Reserved - www.intotransport.ru